Search results for "Calabi–Yau manifold"

showing 10 items of 16 documents

Frobenius polynomials for Calabi–Yau equations

2008

We describe a variation of Dwork’ s unit-root method to determine the degree 4 Frobenius polynomial for members of a 1-modulus Calabi–Yau family over P1 in terms of the holomorphic period near a point of maximal unipotent monodromy. The method is illustrated on a couple of examples from the list [3]. For singular points, we find that the Frobenius polynomial splits in a product of two linear factors and a quadratic part 1− apT + p3T 2. We identify weight 4 modular forms which reproduce the ap as Fourier coefficients.

Pure mathematicsPolynomialAlgebra and Number TheoryModular formHolomorphic functionGeneral Physics and AstronomyUnipotentMathematics::Algebraic GeometryQuadratic equationMonodromyCalabi–Yau manifoldFourier seriesMathematical PhysicsMathematicsCommunications in Number Theory and Physics
researchProduct

A closer look at mirrors and quotients of Calabi-Yau threefolds

2016

Let X be the toric variety (P1)4 associated with its four-dimensional polytope 1. Denote by X˜ the resolution of the singular Fano variety Xo associated with the dual polytope 1o. Generically, anticanonical sections Y of X and anticanonical sections Y˜ of X˜ are mirror partners in the sense of Batyrev. Our main result is the following: the Hodge-theoretic mirror of the quotient Z associated to a maximal admissible pair (Y, G) in X is not a quotient Z˜ associated to an admissible pair in X˜ . Nevertheless, it is possible to construct a mirror orbifold for Z by means of a quotient of a suitable Y˜. Its crepant resolution is a Calabi-Yau threefold with Hodge numbers (8, 4). Instead, if we star…

Pure mathematics010308 nuclear & particles physics010102 general mathematicsToric varietyPolytopeFano varietymirror symmetry01 natural sciencesTheoretical Computer ScienceMathematics::Algebraic GeometryMathematics (miscellaneous)0103 physical sciencesCalabi-YauCrepant resolutionCalabi–Yau manifoldMirror Symmetry Calabi-Yau QuotientsSettore MAT/03 - Geometria0101 mathematicsMathematics::Symplectic GeometryQuotientOrbifoldMAT/03 - GEOMETRIAMathematicsResolution (algebra)
researchProduct

Hilbert modularity of some double octic Calabi--Yau threefolds

2018

We exhibit three double octic Calabi--Yau threefolds over the certain quadratic fields and prove their modularity. The non-rigid threefold has two conjugate Hilbert modular forms of weight [4,2] and [2,4] attached while the two rigid threefolds correspond to a Hilbert modular form of weight [4,4] and to the twist of the restriction of a classical modular form of weight 4.

Modularity (networks)Pure mathematicsAlgebra and Number TheoryMathematics - Number Theory010102 general mathematicsModular formField (mathematics)010103 numerical & computational mathematics01 natural sciencesMathematics - Algebraic GeometryQuadratic equationMathematics::Algebraic GeometryFOS: MathematicsCalabi–Yau manifoldNumber Theory (math.NT)0101 mathematicsTwistHilbert modular formAlgebraic Geometry (math.AG)Mathematics
researchProduct

Conifold Transitions and Mirror Symmetry for Calabi-Yau Complete Intersections in Grassmannians

1997

In this paper we show that conifold transitions between Calabi-Yau 3-folds can be used for the construction of mirror manifolds and for the computation of the instanton numbers of rational curves on complete intersection Calabi-Yau 3-folds in Grassmannians. Using a natural degeneration of Grassmannians $G(k,n)$ to some Gorenstein toric Fano varieties $P(k,n)$ with conifolds singularities which was recently described by Sturmfels, we suggest an explicit mirror construction for Calabi-Yau complete intersections $X \subset G(k,n)$ of arbitrary dimension. Our mirror construction is consistent with the formula for the Lax operator conjectured by Eguchi, Hori and Xiong for gravitational quantum c…

High Energy Physics - TheoryNuclear and High Energy PhysicsInstantonPure mathematicsConifoldComplete intersectionFOS: Physical sciencesFano planeMathematics - Algebraic GeometryMathematics::Algebraic GeometryHigh Energy Physics - Theory (hep-th)FOS: MathematicsCalabi–Yau manifoldGravitational singularityMathematics::Differential GeometryMirror symmetryAlgebraic Geometry (math.AG)Mathematics::Symplectic GeometryQuantum cohomologyMathematics
researchProduct

Quotients of the Dwork Pencil

2012

In this paper we investigate the geometry of the Dwork pencil in any dimension. More specifically, we study the automorphism group G of the generic fiber of the pencil over the complex projective line, and the quotients of it by various subgroups of G. In particular, we compute the Hodge numbers of these quotients via orbifold cohomology.

Automorphism groupPure mathematicsAutomorphismsDwork pencilGeneral Physics and AstronomyAutomorphismCalabi–Yau manifoldCohomologyAlgebraMathematics - Algebraic GeometryMathematics::Algebraic GeometryProjective lineFOS: MathematicsSettore MAT/03 - GeometriaGeometry and TopologyMathematics::Symplectic GeometryAlgebraic Geometry (math.AG)Mathematical PhysicsOrbifoldPencil (mathematics)QuotientMathematics
researchProduct

An unbounded family of log Calabi–Yau pairs

2016

We give an explicit example of log Calabi-Yau pairs that are log canonical and have a linearly decreasing Euler characteristic. This is constructed in terms of a degree two covering of a sequence of blow ups of three dimensional projective bundles over the Segre-Hirzebruch surfaces ${\mathbb F}_n$ for every positive integer $n$ big enough.

geography of threefoldSequenceDegree (graph theory)Projective bundleGeneral Mathematics14J30 14J32 14J60CombinatoricsMathematics - Algebraic Geometrysymbols.namesakeMathematics::Algebraic Geometryprojective bundlesIntegerEuler characteristicLog Calabi-Yau pairFOS: MathematicssymbolsCalabi–Yau manifoldSettore MAT/03 - GeometriaAlgebraic Geometry (math.AG)Mathematics::Symplectic GeometryMAT/03 - GEOMETRIAMathematicsRendiconti Lincei - Matematica e Applicazioni
researchProduct

Modular Calabi-Yau threefolds of level eight

2005

In the studies on the modularity conjecture for rigid Calabi-Yau threefolds several examples with the unique level 8 cusp form were constructed. According to the Tate Conjecture correspondences inducing isomorphisms on the middle cohomologies should exist between these varieties. In the paper we construct several examples of such correspondences. In the constructions elliptic fibrations play a crucial role. In fact we show that all but three examples are in some sense built upon two modular curves from the Beauville list.

Pure mathematicsConjectureMathematics - Number Theory14G1014J32General MathematicsModular formModular invariancemodular forms14G10; 14J32Cusp formModular curveAlgebraMathematics - Algebraic GeometryMathematics::Algebraic GeometryModular elliptic curveCalabi-YauFOS: MathematicsCalabi–Yau manifoldNumber Theory (math.NT)Tate conjectureAlgebraic Geometry (math.AG)MathematicsTate conjecturedouble coverings
researchProduct

Calabi-Yau conifold expansion

2013

We describe examples of computations of Picard–Fuchs operators for families of Calabi–Yau manifolds based on the expansion of a period near a conifold point. We find examples of operators without a point of maximal unipotent monodromy, thus answering a question posed by J. Rohde.

Pure mathematicsConifoldMonodromyMathematical analysisCalabi–Yau manifoldPoint (geometry)UnipotentMathematics
researchProduct

Mirror quintics, discrete symmetries and Shioda maps

2008

In a recent paper, Doran, Greene and Judes considered one parameter families of quintic threefolds with finite symmetry groups. A surprising result was that each of these six families has the same Picard Fuchs equation associated to the holomorphic 3-form. In this paper we give an easy argument, involving the family of Mirror Quintics, which implies this result. Using a construction due to Shioda, we also relate certain quotients of these one parameter families to the family of Mirror Quintics. Our constructions generalize to degree n Calabi Yau varieties in (n-1)-dimensional projective space.

High Energy Physics - TheoryPure mathematicsAlgebra and Number TheoryHolomorphic functionFOS: Physical sciencesSymmetry groupPicard–Fuchs equationQuintic functionAlgebraMathematics - Algebraic GeometryMathematics::Algebraic GeometryHigh Energy Physics - Theory (hep-th)mirror symmetry shioda mapsHomogeneous spaceFOS: MathematicsProjective spaceCalabi–Yau manifoldSettore MAT/03 - GeometriaGeometry and TopologyAlgebraic Geometry (math.AG)QuotientMathematicsJournal of Algebraic Geometry
researchProduct

A special Calabi–Yau degeneration with trivial monodromy

2021

A well-known theorem of Kulikov, Persson and Pinkham states that a degeneration of a family of K3-surfaces with trivial monodromy can be completed to a smooth family. We give a simple example that an analogous statement does not hold for Calabi–Yau threefolds.

Pure mathematicsMathematics::Algebraic GeometryMonodromySimple (abstract algebra)Applied MathematicsGeneral MathematicsCalabi–Yau manifoldDegeneration (medical)Mathematics::Symplectic GeometryMathematicsCommunications in Contemporary Mathematics
researchProduct